
Eur. Phys. J. D 5, 173–177 (1999) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. The nonrelativistic dipole-length, -velocity and -acceleration absorption oscillator strengths for
the 1s22s−1s2np (3 ≤ n ≤ 9) transitions of the lithium isoelectronic sequence up to Z = 10 are calculated
by using the energies and the multiconfiguration interaction wave functions obtained from a full core
plus correlation (FCPC) method. In most cases, the agreement between the f-values from the length and
velocity formulae is up to forth or fifth digit. Combining these discrete oscillator strengths with the single
channel quantum defect theory (QDT), the discrete oscillator strengths for the transitions from the 1s22s
state to highly excited levels (n ≥ 10) and the oscillator strength densities corresponding to the bound-free
transitions are obtained.

PACS. 31.25.-v Electron correlation calculations for atoms and molecules – 32.70.Cs Oscillator strengths,
lifetimes, transition moments

1 Introduction

The study of transition rates is a subject of considerable
interest for many fields. For example, the transition rates
are very important in astrophysical studies, they play an
important role in the determination of atomic abundance.
They are also important in studies of controlled thermonu-
clear reactions, where the atomic radiation is one of the
primary loss mechanisms. To obtain an accurate transi-
tion rate, accurate wave functions must be used for both
the initial and final states. Unlike the calculation of energy
where high precision results can be obtained, the lack of
a bound property makes a precision calculation of tran-
sition rates, or the oscillator strengths very challenging.
For helium and heliumlike ions, accurate nonrelativistic
calculations of the oscillator strengths have been obtained
by Cann and Thakkar [1], and by Kono and Hattori [2].
Much more accurate results are presented by Drake [3].
The less accurate, but much more extensive study was
also carried out by Sanders and Knight [4]. For lithium,
the oscillator strength for the 2s 2S−2p 2P transition was
studied extensively in the literature [5–10] and high preci-
sion results have been obtained. The most accurate oscil-
lator strengths for 2s 2S−2p 2P and 2p 2P−3d 2D tran-
sitions were given by Yan and Drake [5]. More recently,
the oscillator strengths for the 2s 2S−2p 2P transitions
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of the lithium isoelectronic sequence up to Z = 20 are
calculated [11], and the final lifetime for the 1s22p 2P
state of lithium is in good agreement with the recent high-
precision measurements [12,13]. But for other transitions,
such as 2s 2S−np 2P (n ≥ 3) transition that the final
states are in highly excited levels of the lithiumlike ions,
there are not much accurate data previously available.

Recently, a full core plus correlation (FCPC) method
has been developed [14], and used successfully to calculate
the ionization potentials for the ground state of lithium-
like systems [14,15]. The IP’s of the ground states from
Li I to Ne VIII are predicted to within 1 ppm [15]. Ac-
curate excitation energies of lithiumlike systems were also
obtained by using the FCPC method [16–18], and possi-
ble misidentifications in the observed optical spectra were
pointed out [17]. Using the energies and wave functions
obtained from the FCPC method, Wang and Chung [19]
calculated the dipole polarizabilities for the ground states
of lithiumlike systems from Z = 3 to 50.

A natural extension is to study the transition rates by
using the FCPC method. In this work, the dipole absorp-
tion oscillator strengths for the 1s22s−1s2np (3 ≤ n ≤ 9)
transitions of the lithium isoelectronic sequence up to
Z = 10 are calculated by using the energies and wave
functions obtained from the FCPC method. Combining
these reliable discrete oscillator strengths with the sin-
gle channel quantum defect theory, the f -values for the
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1s22s−1s2np (n ≥ 10) transitions and the oscillator
strength densities for the corresponding bound-free tran-
sitions are obtained.

2 Theory

The FCPC method has been given in detail by Chung [14],
they will not be repeated here. The wave function of the
three electron system is given by

Ψ(1, 2, 3) = A[Φ1s1s(1, 2)
∑
i

dir
ie−βr3x(3)

+
∑
i

CiΦn(i),l(i)(1, 2, 3) (1)

where A is the antisymmetrization operator, Φ1s1s (1,2)
is the 1s2 core wave function. The second term on the
right hand side of equation (1) accounts for other possi-
ble correlations and the relaxation of the 1s2 core. The
linear parameters are determined by solving the secular
equation, and the non-linear parameters are optimized in
the energy minimization process. These wave functions are
used to calculate the oscillator strengths.

It can be shown that the dipole oscillator strength is
given by any of the following three forms [20]
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Here, Ei and Ej are the nonrelativistic energies of the ini-
tial and final states for the dipole transition, respectively.
These f -values should be calculated by summing over the
final states and averaging over the initial states. These
three alternatives are called the length, velocity, and ac-
celeration forms, respectively.

As is known, the oscillator strength densities corre-
sponding to the final states in continuum are associated
with the discrete oscillator strengths corresponding to
the bound-bound transitions [21]. We define the oscilla-
tor strength densities of the bound-bound transitions by:

τ(E) =
(n∗)3

Z2
fij (in a.u.) (3)

where Z is the charge of the ion core, E is the energy of the
final state, and fij is the discrete oscillator strength. n∗ is
the effective principle quantum number of the final state
which is defined in the quantum defect theory [22] by:

n∗ = n− µn (4)

where n is the principle quantum number. According to
the quantum defect theory [22], the quantum defect, µn
can be determined from the following formula

En = −
Z2

2(n− µn)2
(in a.u.) (5)

by using the term energy, En which can be obtained from
the FCPC method for n ≤ 9 as input. For highly ex-
cited states with principle quantum number n ≥ 10, µn
should be the smooth function of energy, and can be ap-
proximated by a weakly varying function of energy in the
following form

µn(E) = µ0 + h1E + h2E
2. (6)

The coefficients, µ0, h1 and h2 for each series are deter-
mined by using the µn values obtained from equation (5).
Treating equations (5, 6) as a system equation for En and
µn, one can use the interaction method to determine the
quantum defect, µn and the term energy, En for highly
excited states (n ≥ 10). First, we let µn ≈ µ0, and put it
into equation (5). Then En and µn can be refined by in-
teraction procedure. Finally, the quantum defect, µn and
term energy, En can be obtained.

In the limit E −→ I (from below) where I is the ion-
ization potential of the system, τ(E), as a function of E,
will match to the oscillator strength densities, df/dε of
continuum states, namely

τ(E) =
(n∗)3

Z2
fij =

df

dε
· (7)

For the 1s22s−1s2np transitions of lithiumlike systems
(except lithium atom) under consideration, neither the
Cooper minimum nor the following maximum is found
in the near threshold energy region. Hence, equation (7)
can be used to extrapolate the discrete oscillator strength,
fij , below the threshold, and the oscillator strength den-
sities, df/dε, above the threshold. The oscillator strength
and oscillator strength densities can be accurately approx-
imated by the following formula in the near-threshold re-
gion (|E| ≤ I/2)

τ(E) =
(n∗)3

Z2
fij =

df

dε
=
( Ei

Ei −Ej

)s df
dε
|ε=0 (8)

where s and the threshold oscillator strength density,
df/dε|ε=0 can be determined from our predicted discrete
oscillator strengths. The f -values of some lithiumlike ions
from S13+ to Yb67+ were calculated [23], and a formula
very similar to equation (8), employing s = 2, was used
to extrapolate the cross section to highly excited states.
As is known, for highly charged lithiumlike ions, such as
in reference [23], the spectrum is dominated by the ionic
coulomb field. However for neutral atoms and low charged
ions, such as in our work, the short-range core effects play
a relatively more important role, and the influence of nu-
clear charge on the short-range core effects is sensitive.
For this reason, s = 2 is a good approximation in ref-
erence [23], but in our work, s is a fitting parameter,
and should be the function of nuclear charge Z. Equa-
tions (3, 8) make it possible to determined the oscillator
strengths easily for transitions from a certain initial state
to all the final states of the Rydberg series.
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Table 1. The nonrelativistic oscillator strength for 1s22s−1s2np (n ≤ 9) transitions of lithiumlike systems from Li I to
Ne VIII.

Z 2s−3p 2s−4p 2s−5p 2s−6p 2s−7p 2s−8p 2s−9p

3 fL 0.004819 0.004284 0.002599 0.001581 0.001012 0.000687 0.000445

fV 0.004822 0.004278 0.002597 0.001576 0.001011 0.000688 0.000443

4 fL 0.08316 0.03123 0.01487 0.008196 0.004799 0.003373 0.001969

fV 0.08315 0.03126 0.01487 0.008193 0.004797 0.003370 0.001964

5 fL 0.15376 0.04981 0.02256 0.01223 0.007364 0.004803 0.003222

fV 0.15375 0.04982 0.02256 0.01222 0.007362 0.004795 0.003208

6 fL 0.20344 0.06128 0.02708 0.01447 0.008691 0.005664 0.003902

fV 0.20344 0.06128 0.02708 0.01441 0.008691 0.005660 0.003897

7 fL 0.23894 0.06884 0.02997 0.01588 0.009562 0.006185 0.004270

fV 0.23890 0.06883 0.02997 0.01589 0.009562 0.006189 0.004264

8 fL 0.26526 0.07413 0.03196 0.01691 0.01012 0.006543 0.004489

fV 0.26525 0.07413 0.03196 0.01691 0.01013 0.006544 0.004490

9 fL 0.28547 0.07802 0.03342 0.01761 0.01050 0.006794 0.006308

fV 0.28545 0.07802 0.03340 0.01761 0.01050 0.006793 0.006308

10 fL 0.30142 0.08011 0.03447 0.01813 0.01080 0.006974 0.004781

fV 0.30142 0.08010 0.03447 0.01814 0.01081 0.006971 0.004779

Table 2. Comparison of our oscillator strengths with those of
Peach et al. [8] for 2s 2S−np 2P transitions of lithium.

Transition This work Peach et al. [8]∗

2s−3p 0.00482 0.00488 (0.00481)

2s−4p 0.00428 0.00435 (0.00430)

2s−5p 0.00260 0.00260 (0.00257)

2s−6p 0.00158 0.00160 (0.00158)

∗ The values in this column are the nonrelativistic oscillator
strengths by using the Model potential method, and the values
in parentheses are obtained from the close-coupling method.

3 Results and discussion

In most cases, a transition only involves the participation
of one and two electrons, the rest of the electrons act as
spectators. In principle, we may compromise on the ac-
curacy of the part of the wave function for the spectator
as long as they are the same in the initial and final state.
However, one must make sure that the part of the wave
function for the active electrons is sufficiently accurate in
such an approximation. For the lithiumlike systems, the
1s2 core behaves like a spectator for the 1s2nl−1s2n′l′

transitions, and the FCPC method could be very useful
in obtaining the transition rates.

As is known, the length formula emphasizes the wave
functions at large distance, the gradient operator (the ve-
locity expression) emphasizes the wave functions at inter-
mediate r values, and the acceleration formula emphasizes
the wave functions at small values of r. If we use exact
wave functions the three expressions are identical, but if
we evaluate the oscillator strengths using only approxi-

mate wave functions the results should differ from each
other. In most cases, the agreement between the results
of these three expressions becomes an indication on the
accuracy of the wave functions and the reliability of the
calculated oscillator strength.

In Table 1, we present our oscillator strengths for the
1s22s−1s2np (3 ≤ n ≤ 9) transitions of lithiumlike sys-
tems from Li I to Ne VIII. As can be seen, in most cases,
the agreement between the oscillator strengths from the
length and velocity formulae is up to four or five digits. As
an example, for the 2s−3p transition of N V, the length
and velocity f -values are 0.238 94 and 0.238 90 respec-
tively. We know that, many approximate wave functions
used in practice are most accurate for the intermediate
value of r, thus the velocity formula is usually the most
reliable form. The length formula results are often more
accurate by using the variation wave function. Our results
seem to suggest that the FCPC wave functions should be
accurate in the configuration space from intermediate r
to large r. Although the length and velocity results agree
quiet well, there are still rooms for improvement for the
acceleration results. Since variation principle is used in
the FCPC method, the length formula results are prob-
ably more accurate. The acceleration formula emphasize
the region near the nucleus where the contribution of the
wavefunction to the energy is small. The wave function
in that region is probably less accurate. For example, the
length and velocity f -values for 2s−3p transition of O VI
are 0.265 26 and 0.265 25 respectively, however, the accel-
eration f -value is 0.264 65.

The oscillator strengths for the 2s−2p transition of the
lithium isoelectronic sequence with Z = 3−10 have been
calculate [24], and the results are in good agreement with
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Table 3. The fitted values of the QDT parameters of equation (6), the oscillator strength densities at threshold df/dε |ε= 0,
and the s values in equation (8).

Li I Be II B III C IV N V O VI F VII Ne VIII

µ0 4.7144(−2) 5.0338(−2) 4.4291(−2) 3.8379(−2) 3.3451(−2) 2.9425(−2) 2.6186(−2) 2.3667(−2)

h1 −4.601(−2) −7.997(−3) −2.082(−3) −8.709(−4) −3.421(−4) −1.455(−4) −5.233(−5) −3.612(−5)

h2 −3.006(−2) −1.075(−3) −1.206(−4) 3.581(−5) 1.085(−5) 4.032(−6) 7.875(−7) 4.540(−7)

df/dε |ε= 0 0.3639 0.1221 0.0828 0.0549 0.0384 0.0281 0.0211 0.166

s −1.30 1.52 1.58 1.64 1.70 1.76 1.82 1.86

Fig. 1. Oscillator strengths of 1s22s−1s2np transitions in
C IV. The solid curves are obtained according to equations (3,
8), the dots represent the values computed from equation (3).
The discrete oscillator strengths are multiplied by respective
factors (n∗)3/Z2. The continuous oscillator strengths above the
threshold are df/dε.

the recent accurate theoretical ones of Yan and Drake [5]
and Yan et al. [11]. In this work, our main purpose is
to extend the FCPC method to calculate the f -values
for transitions that the final states are in higher excited
levels. For the lithium atom, The oscillator strengths for
2 2S−n 2P (n ≥ 3) transitions have been calculated by
several authors [8,10,25], and the most accurate nonrel-
ativistic results are probably those of Peach et al. [8]. In
Table 2 we present a comparison of our nonrelativistic
oscillator strengths for 2s 2S−np 2P transitions of lithium
with the accurate nonrelativistic results of Peach et al. [8].
Earlier work on this subject are not included in this ta-
ble, for example, it may be found in references [10,25].
It appears that our nonrelativistic oscillator strengths are
in close agreement with those of Peach et al. [8]. Above
discussion suggests that the FCPC method is useful in cal-
culating the transition processes where the participation
of the core is weak in the optical transitions of 1s2nl−1s2

n′l′, and the cancelation of the error in the core wave

function will likely assist in obtaining a more accurate re-
sult [14].

In this work, the main calculation error is from the rel-
ativistic effects. For Ne VIII, it is about 0.2%. The error
from the energy convergence is less than 1 ppm, and the
error in the core wavefunction can cancel out in the cal-
culating the transition energies [14]. The total error of Ne
VIII is about 0.2%, For other members of the isoelectronic
sequence (Z < 10), the calculation error is less than 0.2%.

Equations (3, 8) make it possible to determine eas-
ily the oscillator strengths for transitions from a certain
initial state to all the states of the Rydberg series. The
oscillator strength density at threshold, df/dε|ε=0, the s
values of equation (8), and the fitted values of the QDT
parameters of equation (6) are listed in Table 3. As an
example, Figure 1 depicts the function (8) corresponding
to the 1s22s−1s2np transitions of C IV. It is seen that
the oscillator strengths calculated from the FCPC ener-
gies and wave functions lie rather well along curve (8),
and the discrete oscillator strength coincides with the os-
cillator strength density at the threshold E = I. This in-
dicates that, our procedure should be reasonable and the
extrapolation results are reliable and accurate.

4 Conclusion

In this work, the nonrelativistic dipole absorption oscilla-
tor strengths of the lithium isoelectronic sequence up to
Z = 10 are calculated by using the energies and wave func-
tions obtained from the FCPC method. The close agree-
ment between the oscillator strengths from the length and
velocity formulae seems to suggest that the FCPC wave
functions should be accurate in the configuration space
from intermediate r to large r, and the predicted oscilla-
tor strengths could be accurate. Combining the calculated
f -values with the quantum defect theory, the reliable and
accurate oscillator strengths for transitions from a certain
initial state to all the states of the Rydberg series can be
obtained.
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